


Scale = 1:51.2

Plate Offsets (X,Y) [B:0-4-6,Edge], [J:0-4-6,Edge], [M:0-7-0,0-3-8]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-6-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2012/TPI2007	CSI. TC 0.97 BC 0.74 WB 0.56 (Matrix)	DEFL. in (loc) l/defl L/d Vert(LL) -0.41 L-M >805 240 Vert(TL) -0.83 L-M >399 180 Horz(TL) 0.50 J n/a n/a	PLATES GRIP MT20 197/144 MT18HS 197/144 Weight: 131 lb FT = 20%			

BRACING-

TOP CHORD

BOT CHORD

WEBS

21-4-11

7-6-11

27-8-0

6-3-5

2-0-0 oc purlins (2-3-11 max.)

1 Řow at midpt

(Switched from sheeted: Spacing > 2-0-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

D-M, H-M

LUMBER-

REACTIONS.

TOP CHORD 2x6 SPF 1650F 1.5E *Except*

6-3-5

6-3-5

T1,T3: 2x6 SPF 2100F 1.8E

BOT CHORD 2x4 SPF 2100F 1.8E

2x4 SPF No.2 WEBS

SLIDER

Left 2x6 SPF No.2 3-5-1, Right 2x6 SPF No.2 3-5-1

13-10-0

7-6-11

(lb/size) B=1718/0-3-8 (min. 0-3-6), J=1933/(0-3-8 + bearing block) (req. 0-3-14) Max Horz B=-95(LC 10)

Max UpliftB=-63(LC 12), J=-136(LC 12)

Max Grav B=2165(LC 2), J=2450(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD B-C=-5673/44, C-D=-5509/63, D-O=-4557/2, E-O=-4492/8, E-F=-4447/30, F-G=-4448/29,

G-H=-4554/7, H-I=-5358/23, I-J=-5533/0

BOT CHORD B-N=0/4997, M-N=0/5009, L-M=0/4843, J-L=0/4830

WEBS F-M=0/2283, D-N=0/365, H-L=0/364, D-M=-1188/151, H-M=-1037/196

NOTES-

- 1) 2x4 SPF 2100F 1.8E bearing block 12" long at jt. J attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF No.2.
- 2) Unbalanced roof live loads have been considered for this design.
- 3) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=28ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (directional); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 4) TCLL: ASCE 7-10; Pr=40.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=40.0 psf (ground snow); Pf=27.7 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.1
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 27.7 psf on overhangs non-concurrent with other live loads.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Bearing at joint(s) B, J considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) B except (jt=lb) J = 136
- 12) This truss is designed in accordance with the 2012 International Building Code section 2306.1 and referenced standard ANSI/TPI
- 13) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	
B1700091MS	S1	SCISSORS	12	1	Job Reference (optional)

Fairman Building Components, Linn, WV 26384

| Job Reference (optional) 7.640 s Oct 7 2015 MiTek Industries, Inc. Tue Mar 07 14:54:22 2017 Page 2 ID:zqtlqpJhpwmou0QCgC79EDzdIB?-3JFDdl_NDK3fMkgdT3aRZKKSgv2kfQdfWfyGeIzdl6F

LOAD CASE(S) Standard