I found this article years ago when we were restoring a 1970 GTX and installed a all new brake system. When brakes are applied on a moving car, the kinetic energy of the car is turned into heat. The faster the car is moving and the faster it is stopped, the more heat is produced. Some of this heat soaks into the brake fluid. Disc brakes presented new problems. In stopping faster (and often heavier) cars more quickly, they generated even more heat which had to be dissipated, with an accompanying requirement for brake fluid with even higher minimum boiling points. Improvements in brake lining materials, brake drum and rotor design and metallurgy have also had a similar effect; improvements in braking efficiency require improvements in brake fluids. To handle these higher temperatures, improvements were also made in wheel cylinder and brake caliper seal design and materials
Silicone fluids, in addition to having high boiling points and being non-hydroscopic, do not damage paint as do glycol fluids. This is of particular importance in regard to show cars where a spill or leak of glycol fluid can have seriously ugly results. There are, however, some disadvantages to silicone fluids. They are slightly compressible, particularly near the higher end of their temperature range. While this is of absolutely no consequence for normal street use, this is why silicone fluids are not used in race cars. (Conversely, racing hydraulic fluids should not be used in street cars. This is because, although racing brake fluids have high dry boiling points, most are highly hydroscopic, and have relatively very low wet boiling points. They would probably work extremely well if you were to change the fluid every week or so.) Because air bubbles do not regularly dissipate in silicone brake fluid, special care must be used to prevent them from forming during pouring and bleeding operations. Bleed with slow pedal strokes, avoiding "pumping" the pedal. It may be necessary to bleed the system again in a day or so if there were any air bubbles which wouldn't bleed out the first time.
A newly rebuilt and clean brake system filled with silicone fluid should outlast a system filled with glycol fluid by several times. There is little advantage in adding silicone fluid to a system which contains even small amounts of contaminants. Merely bleeding the system is not enough, as there will be pockets of old fluid and sludge which will not bleed out. Silicone fluid tends to concentrate any residual glycol fluid, moisture and sludge, into slugs, instead of allowing their dispersal throughout the fluid, as does glycol fluid. This can lead to relatively severe but localized problems, rather than the more general system deterioration experienced with old moisture-laden glycol fluids. A "new" system full of silicone fluid will require very little maintenance for years and it will not hurt your paint, if it is spilled on it.